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We simulated the van Hemmen spin glass model by multicanonical algorithm. 
The exact results for this mean-field model are reproduced. Physical quantities 
such as energy density, specific heat, susceptibility and order parameters are 
evaluated at all temperatures. We also studied an alternate model with short 
range interactions, which displays the many-valley picture in 2D for random 
variables having values _% 1. 
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1. I N T R O D U C T I O N  

In the last  few years,  the mul t i canonica l  ensemble  (1,2) has been used 
extensively for numer ica l  s imula t ions  in var ious  c o m p u t a t i o n a l  physics  
problems.  I t  was or ig inal ly  deve loped  for systems with f i rs t -order  phase  
t rans i t ions  to avo id  supercr i t ical  s lowing down.  (3 5) Improve me n t s  up to 60 

orders  of magn i tude  could  be achieved and  the m e t h o d  was tested on some 
analy t ica l ly  solvable  models.  (6) Othe r  targets  for the me thod  are systems 
with conflict ing constra ints .  F o r  low tempera tu res  these systems split  into 
m a n y  t h e r m o d y n a m i c  states, separa ted  by  high tunnel ing barriers .  Mul t i -  
canonica l  s imula t ions  overcome these barr iers  by connect ing  back  to the 
h igh- tempera tu re  states, where on the o ther  hand  low- tempera tu re  canoni-  
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cal simulations tend to get trapped in one of those states. Therefore with 
the new method the relative weight of the branches can be explored and 
supercritical slowing avoided. Although for these kinds of systems the 
method is not as well established as for first-order phase transitions, first 
promising studies exist for spin glasses, (7-9) the random Ising model, (~~ and 
proteins. (H) It was claimed that the multicanonical algorithm outperforms 
simulated annealing (~2) with respect to ground-state investigations, while 
the relationship to the canonical equilibrium ensemble remains exactly 
controlled. (8) This is potentially an important development, as similar 
computational problems (the so-called NP-complete problems) play an 
important role for a number of systems in biology, chemistry, physics, 
engineering, economics, and more. It is therefore of importance to test the 
performance of the multicanonical algorithm against exact results of these 
kinds of systems. 

One aim of this paper is to perform such a test by simulating the van 
Hemmen spin glass, (~3~ which is one of the few analytically solvable models 
for this class of systems. Unlike the more frequently used Sherrington- 
Kirkpatrick (SK) model, (~4) the exact solution can be obtained without 
replicas. Its main features are consisten with that of a spin-glass model, 
except for the metastable ground-state structure. To avoid this disadvan- 
tage one may consider a finite-range van Hemmen model as suggested by 
Binder and Young. (15) Such a model, which would be no longer analyti- 
cally solvable, may lead the way to nontrivial ground-states. Checking this 
assumption constitutes the other main objective of the present paper. 

The paper is organized in the following way. We first review the van 
Hemmen model. Then we present our results for the infinite-range model. 
After showing that the method is able to reproduce the exact solutions, we 
concentrate on the model with local interactions. At the end we give some 
conclusions and an outlook on further work. 

2. THE V A N  H E M M E N  SPIN GLASS 

A spin glass is a disordered magnetic system with a well-defined 
freezing temperature Tf such that for T < T s the magnetic moments are 
frozen in random orientations without a conventional long-range order. (15) 
An interesting approach to describe such behavior is the van Hemmen 
model. (13) It is defined by the Hamiltonian 

Jo 
H = -- ~ ~ S(i) S ( j )  -- ~, Jo.S(i) S ( j )  - h ~ S(i) 

t ,J i , j  i 

(1) 
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describing N Ising spins interacting with an external magnetic field h and 
with each other in pairs (i, j). A direct ferromagnetic coupling is 
incorporated via J0. The Jo contain the randomness, 

J 
J~ = ~ [~,r/j + ~jrh] (2) 

where the ~ and r 5 are independent and equally distributed random 
variables with mean zero and variance one. This distribution of Jo.'s is 
shown (16) to model rather well the Ruderman-Kittel-Kasuya-Yosida 
(RKKY) interaction (17) in a real metallic spin glass: symmetric and highly 
peaked at J,j = 0. The Jij contain 2N independent random variables and 
describe therefore a random-site problem like the Mattis model, (18) not a 
random-bond problem like the SK model. (14) But unlike in the Mattis 
model, where J/j= J ~ j ,  the frustration cannot be transformed away by 
S(i) = ~,S(i). 

The model has three order parameters, 

N N N 

m N = N  1 ~ S(i), q l N = N  -1 ~ ~iS(i), q 2 N = N  -~ ~ ~iS(i) (3) 
i = l  i - - 1  i = 1  

Without a ferromagnetic interaction, i.e., for J0=0,  the magnetization 
vanishes, m N = 0 ,  and the order parameters qlu and qzu are combined to 
give a more relevant order parameter q: 

- l l  
q = N  ~g(qlN+q2N)) (4) 

from which the thermodynamic quantities can be obtained. Using Eq. (3), 
we can rewrite the Hamiltonian in Eq. (1) as 

- f l H  1 2 = N [ g K o M  N + KqlNq2N + BmN] (5) 

with Ko=flJo, K=flJ ,  and B=fih. In the limit N ~  oo one finds the 
magnetization and the order parameter satisfy the set of equations 

m = (tanh{Kom + H +  Kq(~ + r/)} } (6) 

q = (tanh{Kom + H +  Kq(~ + q)}(~ + 7)/2) (7) 

where the solutions (m, q) are obtained by minimizing the free energy 
functional in a mean-field ansatz. Analytical expressions for the other 
quantities follow from the above equations. 

The main features of this mean-field model are that of a spin-glass 
model with randomness and frustration, but since the system actually picks 
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out a Mattis state, (18~ it lacks the great multiplicity of metastable states 
which is considered integral to a true spin glass. But one should keep in 
mind that even the Edwards-Anderson Ising spin glass does not always 
have this desired multiplicity. For instance, in D = 2  the model with 
Gaussian distribution of the Jus has only two ground states. (19) The 
van Hemmen model nonetheless still describes a spin glass and deserves 
further investigation. Being analytically solvable makes it an attractice 
candidate for the study of systems with randomness and frustration. 

3.  R E S U L T S  F O R  T H E  I N F I N I T E - R A N G E  M O D E L  

We performed multicanonical simulations of the van Hemmen model 
on clusters of RISC workstations at SCRI and ERAU. Independent 
Gaussian distributions for ~i and ~i with mean value zero and variance one 
were created. Simulations with N =  64, 216, 512, and 1000 spins were easily 
carried out. On the largest systems we performed one million iterations 
(which requires a few hours of C P U  time on an IBM RISC/6000-320h) to 
obtain the multicanonical parameters for a flat probability distribution. 
The smaller systems need significantly less iterations and C P U  time. 
Thermodynamic averages were evaluated over two million iterations, 
following 2 x  105 iterations of initial runs, although with a disordered 
starting configuration the multicanonical ensemble is immediately in equi- 
librium. With these extended statistics we could go well beyond earlier 
work on this model. (2~ 

We first considered the pure spin-glass case and set the ferromagnetic 
coupling J0 = 0. First tentative runs showed a strong dependence of the 
measured quantities on the lattice volume and the distribution of the 
random variables even for large lattices, which was neglected in the older 
work. (2~ In order to take into account these finite-size effects, we simulated 

Table I. Ground-State  Energy e ~ Order Parameter 
qO, and Tunnel ing Time T~V as a Function of the 

Lattice Vo lume for the Inf ini te-Range Model  

N e ~ qO z;~ 

64 -0.3600(89) 0.6031(78) 
216 -0.3291(47) 0.5727(46) 
512 -0.3253(48) 0.5689(55) 

1000 -0.3193(38) 0.5643(47) 

oe -0.3181(33) 0.5615(37) 

Exact ~-0.3183... 0.5642... 

708(37) 
3422(271) 
8979(1470) 

23488(1720) 
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ten realizations with different distributions of random variables for each of 
the N--64 ,  216, and 512 lattices and five realizations for N =  1000. To 
evaluate the performance of our algorithm, we defined the ergodicity time 
r~v as the average number of sweeps needed to move the energy from E .. . .  
to Emi n and back. A sweep is defined by updating each spin on the lattice 
once (in the average). The data, displayed in Table I, are consistent with a 
straight-line fit (Q = 0.76), which gives the finite-size behavior Z~v ~ -/V 1"27(3) 
sweeps. In updates this corresponds to a slowing down ~ N  227(3). This 
value is close to the optimal behavior ~ N 2 and significantly lower than the 
values observed for the Edwards-Anderson spin glass. (7 97 

This is a first indication of the lack of a many-valley structure such 
as the one observed in the multicanonical simulation of the Edwards-  
Anderson model. (8) This point becomes obvious in the distribution of the 
order parameter q: there are only two ground states. As an example we 
display in Fig. 1 this distribution for a realization of N =  1000 spins. 
TI/J= 1 is the bifurcation point, below which the nonzero ordering sets in 
and smoothly evolves to its maximum value qO. Both arms of the order 
parameter distribution of Fig. 1 become more narrow and 6 function-like 
as the temperature decreases. This is what is expected as the multiplicity of 
the low-lying excited states decreases toward the unique ground state of the 
model studied here. The existence of these low-lying excited states is also 
supported by the linear behavior of the specific heat at low temperatures, 
which we present in Fig. 2 for N =  1000. Note the strong dependence on the 
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Fig. 1. Spin-glass order-parameter distribution for N =  1000. 
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Specific heat  versus temperature  for N =  1000. The  theoret ical  so lut ion  is s h o w n  by 
the dashed line. 

distribution of the random variables (hence bigger error bars) around Tf 
where the model  encounters a discontinuity in the specific heat. 

We estimate the infinite-volume ground state energy and the ground 
state value value qO of the order parameter from a finite-size scaling (FSS) 
fit of  the form o o fN=f~o +e/N. In Table I we display our results for the 
different latice sizes. The error bars are with respect to different realiza- 
tions. Our ground-state energy e ~ = - 0.3181 _+ 0.0033 is in good agreement 
with the theoretical value for the infinite lattice - 1 / ~  at T =  0. The same 
is true for our order parameter value qO= 0 .5615_  0.0037 at T =  0, which 
agrees well with the theoretical value 1/x/-~.(2~ 

After having the above-mentioned features of the van Hemmen model  
assessed by our simulations, we turned to a qualitative investigation of the 
case with external magnetic field h. We carried out simulations for 0 < h < 1 
with steps of Ah = 0.1. Figure 3 shows a three-dimensional display of the 
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3 D  surface of  m a g n e t i z a t i o n  versus t emperature  and  magnet i c  field, obta ined  from the 
s imulat ion  on an N =  512 lattice. 
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magnetization with respect to temperature and the external field. For 
T<Ty=J ,  the freezing temperature, a clear jump to a state of higher 
magnetization is seen for 0.4 < h < 0.5, indicating a field-induced transition 
as expected by the analytical results. For h < 0.4 we observed the same 
behavior of the nonzero ordering at temperatures below T s as displayed in 
Fig. 1, but found q = 0 at all temperatures for 0.5 < h. 

Next we included the ferromagnetic coupling in the model, but with 
zero external field. The spin glass-to-ferromagnet transition is supposed to 
take place in the region Jo ~ J. We observed that the magnetization has a 
jump and the order parameter vanishes for Jo approaching J. While at 
Jo/J- 0.6 the distribution of theorder parameter was the same as depicted 
in Fig. 1, for Jo/J= 0.9 it assumed the value q- -0 .34  at about T/J~ 2 and 
stayed constant all the way down to T =  0: the system simply keeps staying 
in the metastable spin-glass phase, and does not jump spontaneously to the 
ferromagnetic phase. Such a behavior was found elsewhereJ 21) Another 
important quantity is the zero-field susceptibility Zo(T). It is shown in 
Fig. 4 as a function of the temperature for several values of the ferro- 
magnetic coupling J0- Here the error bars are within the size of the points. 
One can easily distinguish between two regions. For T <  T i the suscep- 
tibility develops a plateau, a feature also shared by the Sherrington- 
Kirkpatrick model. At T - - T  s we find indications for a "cusp" in the 
susceptibility consistent with a second-order phase transition. The value of 
the susceptibility at T = T/agrees well with the analytic solution Zo(Tr) = 
1~(J-J o). For Ts<T, the susceptibility shows a pure Curie-Weiss 
behavior Zo(T)= 1/(T-TI). Entering the region of the metastable spin- 
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glass phase mentioned above, around J o / J  = 0.6, the plateau starts getting 
distorted and only with difficulty can the cusp be recognized. 

The multicanonical simulation of the van Hemmen model has 
produced quite well the results as they are known in the exactly solvable 
mode. The phases are clearly observed, and main features such as a linear 
rising specific heat, and the plateau in zero-field susceptibility are easily 
obtained. We could reproduce with high accuracy the exact values of 
various quantities for arbitrary temperatures. In our simulations it is 
straightforward to probe the ground states for systems like the present one 
which includes randomness and frustration. 

4. T H E  S H O R T - R A N G E  M O D E L  

What is lacking in the original van Hemmen model is the multiplicity 
of metastable states, whose absence mainly stems from the long-range 
character of the interaction. Binder and Young ~ suggested, as a possible 
way of avoiding this problem, to confine the interaction between pairs (i, j)  
in the van Hemmen hamiltonian (1) to a finite range. In this section we 
study the variations of this attempt. 

We start our analysis with the nearest-neighbor interaction and con- 
tinue by stepwise enlarging the interaction range. Both the 2D and the 3D 
cases are considered. We study mainly the case where the random variables 
~'s and 0% of Eq. (2) take discrete values +_ 1, but also where they are 
chosen from a Gaussian distribution. From the definition of the Jik 
in Eq. (2) it follows that the first case, for D = 2 with nearest-neighbor 
interaction, can be interpreted as the site-frustration version of the 
Edwards-Anderson spin glass, where randomly half of the interactions are 
suppressed and set equal to zero. Therefore we expect the short-range 
version of the van Hemmen model to have in this case similar complexity 
to the Edwards-Anderson model./22) 

If the ~'s and r/'s are restricted to the values + 1, the Ju of Eq. (2) can 
be rewritten as 

J 1 J~ = ~ ~%( + ~i~%%) (8) 

Then the N lattice points can be divided into two disjoint subjects 
according to the sign of ~i~/i. For J0=0 ,  the "blue spins" (~i~/+= +1) and 
the "red spins" (~i~/g = - 1 )  remain as uncoupled sets, since the interaction 
of Eq. (8) is nonzero only between the spins of the same color. In the 
mean-field model the Mattis transformation S(i)-+ ~iS(i) transforms blue 
ones into ferromagnetic interacting spins and red ones into antiferromagnetic 
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interacting spins. At sufficiently low temperatures, the blue spins will be 
ordered, whereas the red spins remain disordered due to frustration. {13) In 
the short-range model, however, a phase transition can occur only when 
the ferromagnetic interacting blue spins percolate to form an infinite 
cluster. This happens when the probability of blue spins exceeds the site- 
percolation threshold. The dimension then plays as large a role as the site- 
percolation thresholds depend on it. 

We first considered, in D = 2, the Hamiltonian (1) with sums taken 
over only the nearest-neighboring pairs (i, j )  and J0 = h = 0. The random 
variables ~i and r/i are set with equal probability to + 1. In this case, the 
site-percolation threshold is Pc = 0.59 and neither the blue spins nor the red 
spins can form an infinite percolating network. We simulated five realiza- 
tions with different distributions of random variables for each of the square 
lattices with N =  144, 256, 576 and N =  1024 spins. Table II shows our 
results. 

Figure 5 displays the distributions of the order parameter q for one of 
our realizations with N =  144 spins. For  temperatures below the bifurcation 
point the many-valley structure of the ground states, as for the Edwards- 
Anderson model, reappears. This is what we expected by the above 
argument and it is the new feature which is missing in the infinite-range 
version of the model. The model in this form does not form a Mattis state 
and displays a multiple degenerate ground-state structure. Similar pictures 
were seen for all of the realizations on the lattices we have studied. 

To see the performance of our algorithm for short-range interactions 
we evaluated the ergodicity times and their finite-size behavior, which are 
also shown in Table II. A straight-line fit (Q=0.51)  to the data gives a 
slowing down, in updates, of ~ N  z87(22). It is almost a factor N slower than 
the ergodicity times of the infinite-range model and is related to the fact 
that the number of local minima increases with the volume, therefore 

Table  II. Ground-State  Energy e ~ Ent ropy  s o , and 
Tunnel ing Time r~  as a Funct ion  of  the  Latt ice 
Volume f o r  the  2 D  S h o r t  Range  M o d e l  w i t h  ~ and 

q = _ + l  

N e ~ qO z~ 

144 -0.4833(52) 0.0994(26) 11993(2070) 
256 -0.4922(18) 0.0977(45) 25565(6702) 
576 -0.4929(35) 0.0958(33) 186421(80684) 

1024 -0.4932(32) 0.0951(35) 483333(258736) 

-0.4956(31) 0.0945(30) - -  

822/73/3-4-21 
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Fig. 5. 
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Short-range van Hemmen model spin-glass order-parameter distribution for N =  144. 

slowing down the ergodicity time by an extra factor N. On the other hand, 
our tunneling time is much better than what was achieved in earlier work 
on multicanonical simulation of the Edwards-Anderson Ising spin glass, (7) 
the short-range version of the SK model. This reflects also our general 
observation that simulations of the van Hemmen model are much easier to 
carry out than the ones of the Edward-Anderson spin glass. 

The similarity between the two models can be seen in the specific heat, 
too. In Fig. 6 we show that the specific heat vs. temperature for N =  1024 
together with the specific heat for the Edwards-Anderson model. (8) The 
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er ror  bars  are with respect  to different real izat ions.  The  shor t - range  version 
of the van H e m m e n  mode l  cons idered  here d isplays  a s imilar  s t ructure  to 
the E d w a r d s - A n d e r s o n  mode l  and  is different f rom tha t  of the mean-f ie ld  
mode l  as d i sp layed  in Fig. 2. 

F igures  7a and  7b show the fits for the g round-s ta te  energy and  en t ropy  
per  spin. F o r  the g round-s t a t e  energy we find e ~  - 0 . 4 9 5 6  _+ 0.0031 com- 
pa red  to e ~  - 0 . 5  for the co r re spond ing  infini te-range mode l  with discrete 
values + 1  of the r a n d o m  variables.  O u r  es t imate  for the g round-s ta te  
en t ropy  is So =0.0945(30) .  The a p p r o a c h  to scaling seems to take  place 
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already for moderate-size lattices, especially for the ground-state entropy. 
This is again an indication of multiple degenerate ground-state structure. 
Our value of the ground-state entropy s0=0.0951(35) for an N =  1024 
lattice implies 10.6 x 10 42 approximate number of distinct ground states. 

The important question is then, of course, how does this picture 
persist. First, staying in 2D, we replaced the _+ 1 distributions of the 
random variables by Gaussian distributions. In this case there were no 
multiple degenerate ground states and we were back to the two-state 
feature of the original model. Here, the J~ never vanish and spin clusters 
are connected by partially frustrated bonds so that the system always forms 
an infinite percolating network. Again this short-range van Hemmen model 
behaves in qualitatively similar way to the Edwards-Anderson model. In 
D = 2, the Edwards-Anderson model similarly has a unique ground state 
for the continuous distribution of random bond variables. (19) 

The great importance of the site percolation for our problem can be 
seen when one keeps the _+ 1 distributrion of the random variables, but 
includes next-to-nearest neighbors in the interaction. Here the site-percola- 
tion threshold is Pc~ 0.14.{22) Similarly in 3D with only nearest-neighbor 
interaction and with ~'s and t/'s having values _+ 1 one has Pc = 0.312. Both 
cases therefore allow infinite clusters of grouped spins. We simulated both 
cases and found again that the multiplicity of ground states disappear. 

We found that the suggestion of ref. 15 did not prove to work as well 
as expected. Only on a square lattice with nearest-neighbor coupling and 
with the discrete values + 1 for the random variables did we obtain multi- 
ple degenerate ground states. In this particular case, the frustration does 
not percolate. Higher dimensions or switching to continuous random 
variables makes the frustration percolate, and hence a mean-field behavior 
sets in. Unlike the Edwards-Anderson model, it is not the dimension in 
which the lattice is embedded, but the site-percolation probability that is 
the important factor. Hence, the details of the lattice structure are of crucial 
importance. This restricts the use of the short-range version of the van 
Hemmen model considered here. 

5. C O N C L U S I O N  

We tested the performance of the multicanonical algorithm for systems 
with conflicting constraints by simulating the van Hemmen spin-glass 
model. We reproduced with high accuracy the values of various quantities 
as they are known in the exactly solvable mean-field model. This proves 
that the algorithm is a reliable tool for this class of systems, too, and 
should encourage its use for other investigations of systems which have 
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to cope with these kinds of problems. Based on the similarity of  the 

van H e m m e n  model  to neural networks,  we intend to use the method  here 
in future work. 

To enhance the original model  with a richer ground-sta te  structure we 
also studied, following Binder and Young,  (15) variants of  the van Hemmen  
model  by replacing the infinite-range interaction. We found in 2D, with 
discrete r andom variables and nearest-neighbor interaction, a much richer 
structure than the original model,  but  this does not  persist in higher dimen- 
sions, nor  for cont inuous r andom variables. Since its behavior  depends on 
the details of the lattice and the interaction, the short-range version of  the 
van Hemmen  model  does not  appear  to have a universal character  to 
model  spin glasses. This limits the value of such attempts. On  the other  
hand, one may  exploit this lattice dependence to construct  a spin-glass 
model  with desired structures, but  this is beyond  the scope of this paper. 
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